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ON TRANSONK! FLOW PAST A WAVE-SHAPED -WALL 1
.

By CARL KAPLAN

SUMMARY

l’he present report i8 an exi%wbn of a prm”ou8 invatigaiion
(demribed in NACA Rep. 1069] concerned with the solution
of i%e nonlineax difierentid equzti.on for tranwmi.c j%w past
a waq waU. In the prwnt work several w nationa are
introdmd which permit the solution of the recursion formti
arking jrom the method oj integration in se?%%. In addi%n,
a novel nqmem”cal test oj convergence, applied to the power
serh (in h tranaonic timilmity parameter) repremnting the
local Mach number dixi%ibwtim at the bmuuimy, indicates
that smooth symmetrical potential jlow pa8t the wavy wall is
no longer pomible once the &id mw?ueoj the dream Mach
number hus been tziwmi?ed.

INTRODUCTION

In NACA Report 1069 (ref. 1) the writer considered the
problem of two4irnensional transonic flow past an in.iinitely
long sinusoidal solid boundary. The problem was treated
in the physical plane and the purpose was to investigate
whethm or not the flow past the wavy wall remains a smooth
symmetrical type of potential flow when the undisturbed-
stream Mach number exceeds its -critical value. By a
smooth type of potential flow is meant one for which the
veloci~ potential, say, and its first derivatives are single-
valued and continuous; that is, there are no &continuities
of the nature of shock waves.

Initially, the Prandtl-Busemann small-perturbation method
was applied and the velocity potential developed inclusive

a
of the third power in the “thiclmess” coefficient e=—

A/21r
where
a amplitude of wavy wall
A wave length of wa~ wall
Tho velocity potential was then referred to the critical speed

k(l –iW)’@
of sound c,,, the coefficient e was replaced by

-y’+1

where k= (Y+l)~
(1–J@)3fl is the transonic similarity parameter, and

terms involving powers of 1—M.g higher than the tlrst were
neglected (main assumption for transonic flow). This simpli-
fied or transonic form of the PrandtJ-Busemann solution waa
shown to be identical with the one obtained by solving the sim-
plitled nonlinear differential equation for transonic flow, with
the boundary condition taken not at the wave-shapcdwall but
at the flat plate corresponding to vanishing amplitude. The
calculation was carried through the sixth power in the tran-

sonic sirnilari~ parameter k aqd corresponds to the in-
superable task of obtaining the PrandtLBusemann solution
to the sixth power in the thicknw coefficient e. Thus each
iteration step of the PrandtLBusemann method contributes
to the transonic form of the solution, which may therefore be
considered a result of thin-proiile theory with diaturbsmces
not neceeaarily small compared with 1—M.2. The main
conclusion reached in reference 1 was that the transonic

similarity parameter k must be less than ~—a valuo still

somewhat greater than the critical value 0.83770 calculated
there.

The purpose of the present work is to espress the solution
of the problem of tnmsonic flow past the wavy wall in a
form more suitable for general considerations and to prove
that the assumed smooth symmetrical type of potential flow
camot exist at stream Mach numbers beyond the critical
value.
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SYMBOLS

nondimensional rectangular Cartesian coordinates
amplitude of wavy wall
wave length of wavy ivall
reference element of length

“thickueas” coefficient of wavy wall, ~
AJ2T

ratio of specific heats at constant pressure and con-
stant volume

stream velocity
local Mach number
undisturbed-stream Mach number

transonic similarity parameter, (7+1)6
(1 –_iw)@

critical speed of sound
velocity potential of flow
transonic disturbance potential
functions of y only, related to j(z,y)
numerical coefficients

generating functions of k, 2A: .1, P
r-o

functions of dummy variable r, ~ &?. T*, lower
n-l,m

label starts from 1 when m is ne=wtive and from
m when m is positive

denote diilerentiation with respect to independent
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ANALYSIS

GENERAL FORMULAS

If the undisturbed stream is in the direction Qf the positive
z-axis, then the velocity potential @ referred to the critical
velocity cm can be written as (see ref. 1)

4-Z+* (1–M.2)f(z,@

where the second term on the righkhand side is a disturbance
velocity potential and implies that tkrms involving powers of
1—M@s higher than the first have been neglected. The d&r-
ential equation for transonic flow satislied by the function
j(z,y) is obtained horn the general d.iilerential equation for
compressible flow and takes the following simplified non-
linear form:

by af by—. .—
ay= ax ax=

The boundary conditions to be fullilled by j(z,y) are as
follows :

af—=—
ax 1
af.
5j= 0 1 (at y= m)

I
(2)

af _ ~shz -
ay . (at y=o, – @<z<m)

)

Here z and y are nondimensional rectangular Cartesian
coordinate simply related to the physical plane coordinates
X and Y by means of the transformation

x=x

y=(l —ikf.yv

and the equation of the wavy -wall is Y=e- cos X or
y=(l —Mm~% Cos z Clwly, .f(%y) involves only the
vmiables x and y and the transonic simil-grity parameter k.

The most general form for the function ~(z,y) to ensure
symmetrical potential flow past the wavy wall is the follo~”
(see fig. 1):

f(x,y)=–x+~lf= sin nx (3)

where the f. are functions of y only. When this form for
$(z,y) is substituted into equation (1) and the coefficients of
the separate harmonic terms sin nx are equated to zero,

Y

—u Ad“
x x,

Y

FIGURD l.—Wave#qed wall.

\

the following system of second-order rionlinear ordinary
diilerential, equations for fn results:

fnn–nyn=—$n~lm (n-m) fda-.—
m-l

1-
~ nm~lm (n-l-m) f ja~. (n=l,2, . . . =) (4)

Before proceedi& to the solution of these equations, several
formuha of general interest and subsequent” use are given.
They have been derived in reference 1. The local Mach
number distribution is given by

l–M1=–(l–MJ)% (6)

The equa~qn from which the critical value of the transonic
simil~ty parameter is calculated follows from equation (6)
by Wang x=O, y=O, and M=l; that is,

.

af()z ..O=O
s-o

or with the aid of equation (3),

$JLfx(o)=l
n-l

The presfmre coefficient

c,, +=?=
7j P. u=

is given by

(6)

(7)

INTEGRATION IN SZRIES FOR THE FONCTIONSYn

- In reference 1, equations (4) were solved by an iteration
procedure and approximate expressions for fi to f~ were ob-
tained. An examination of these expressions showed thtit
the general forni off. is

n—1

fn=@~oe-(’p+’J’-~-2 y’~A: : P+” - (n=l, 2, . . . co) (8)
g-o r-p

where, if p=O, the upper limit o! q is n—l and, if p #O, the
upper limit of q is 2p+n— 2. The four-labeled coefficients
A: yare real numbers calculated from” recursion formulas
obtained from the system of differential equations (4) nnd
the boundary condition at the surface of the wavy wall.
The boundary condition at y= =1is automatkdly .&tied
by the form of f=; whereas the boundary condition at the
wall takes the form

(j.’),-o= ;; . ( )}‘n= 1
n#l

(9)

Inserting the expression for f. given by equation (8) into
equations (9) yields immediately the following results:
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where, if n= 1, the lower limit of p on the righhhand side
is unity and, ifn%l, thelowerlimit ofpis zero. Also, ifn=l,
the upper limit r of p goes from 1 to co and, if n#l, r goes
from Oto ~.

By elementary manipulation of series, the second of equa-
tions (10) can be replaced by the following more useful forms:

where in the first term on the righbhand side the lower
label p starts from 1 when n= 1 and from O when n# 1.

In reference 1, recursion formulaa were derived for the
coefficients A;;. In the present report a much more
significant approach is introduced. Note that equation (8)
can be rewritten in the following form:

where

n—1

fn=~$ke-v)’p+n~-2A*QP ~Q (12)
g=o

r=o

In a manner similar to that described in reference 1 for the
coefficients A::, recumion formulas can be obtained for the
power series An@P. Indeed, the two @pea of recursion formu-
Irw are intimately connected and, for a given value of p,
the one can be obtained from the other by mere inspection.
A single recursion formula can be written for the g&eral
quantity A“cP but the resulting apression is cumbemome
and serves no practical purpose. It is much-more desirable
to obtain separate recursion formulas for each value of p.
As example9 of procedure, the recursion formulas for p=O,
1, and 2 are considered in the sections which follow.

‘RECURSION FORMUIA FOR A.ao

With p=O, the recursion formula is (compare with eq. (57)
of ref. 1)

2n(q+ l)A:+?=(q+ 1) (g+2)P z’AR+~+

(n=2,3,. . .CO; g= O,l,. . n-2) (13)
where

~.;a=; (q=n–2)

(q #n–2)

This recursion formula can be solved, the solution starting
with q=n—2 and descending towards q=O. Thus, for
g=n–2, equation (13) becomes

n—2

8(n— l)AR _f=~ (m+ 1) (n—m. — l) A”’+: “A”.-?;:20
m-o

(n=2,3,. . . O) (14)

Now, multiply both sides of this equation by ~ where r is a
dummy variable and sum from n=2 to n= ~. Then

983

Let

A, o=n~ &_fI P

then “

By observation, it can be seen that the right-hand side of
equation (15) is equal to (rA1 o~. Equation (15) can thus be
replaced by the following fit-order nonlinear differential
equation:

(TA, O’)’-8TA, J+8A, 0=0 (16)

The solution of this equation is

Al “~=coe+Al0’

where co is the arbitrary constant of integration. From the
definition of Al o it follows that, with r=O,

co= A1oO
and hence

A, 0’ “irA1%j
~=e .

(17)

Note that by definition AnoO involves the coefficients A; ~
which are ultimakly calculated by means of the auxiliary
relations, equations (11), engendered by the boundary con-
ditions at the surface of the wavy wall. k solution9 of the
recursion formulas, therefore, the coefficients AnoOappear as
undetermined quantities.

Al;.
The expansion of ~ m powers of TA*oO is a nontrivial

problem which fortuna”tiy can be solved with the aid of
Lagrange’s investigations on the reversion of power series
In reference 2, Lagrange’s problem is illustrated by the
following example:

TO expand&in powers of y=xe~z. The result is exprewed
&w

e==l+ay+
a(a — 2b) ~ “a(a— 3 b)a

21 Y+ 3* d+...+

a(a-nb)a-’yn+
‘n!

. . . (18)

In particuh, with a= 1, b= –1, and :=&, the solution of .
the equation log $=y/ or ;=.&E (generally referred to as
Eisenstein’s problem) is given by the series

E=n$l-Y”-’

Then, if t is replaced by $$ and y by &A1oO~ the solution

of equation (17) is
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or

%AW-’=>, /;~&JA1/)”ru-’
n-l

Hence, by equating coefficients of equal powers of r on both
sides of thk equation,

‘A:_;_ ‘““–m (A’/~ (n=2, 3,. . . aJ) (19)

which is the solution of the recursion formula, equation (14).
The coefficient &-t can be considered as the. generating
function for the set of coefficients 411 ~. Thus, equation
(19) can be written as

.

(20)

Then, by equating coefficients of equal powers of k on botb
sides of this equation and putting A: ~= 1 (see boundary
condition, eqs. (10)), the following equations are obtained:

I (21)

. . . . . J
.

Nob that from the first of these formulas A; ~=~ and that

from the boundary condition, equations (11), A; ~=&-

Consider now q=n–3. Then equation (13) becomes

2n(n–2)&_g=(n–1) (n– 2) &_f+

Multiply both sides of this equation by # and sum from
n=3 to n= W. Then

2 jjn(n-2)*_~ra”=~ (n—l) (n—2)&_~Tn+
n-2 n-l

A1o=~&-ir=
n-1

and

A,o=~AQr”
n-2

then

Al 0’A2 o’=~ rn& m(n—m+2)A:-?A” ‘:?~”
n-l m-l

It can be shown easily that the last term on the right-bond

side of equation (23) is equal to ~ r (r’Al o’-z% o?’. Hmwe,

equation (23) can be rewritten aa the following ditlerential
. equation:

2PA, o“— 2rAa J=T’AI o’— 2rA, J+2A1 o+-: r (raAl *’A* 0’)’

(24)
Now, from equation (16), it follows that . .

(rA1 {)’=8 (rAl {–Al o)

TA1 O’(rAl 0’)’= 4rAl Ofl

Then equation (24) can be written as

(26)

(rA2 o’)’–
s+ T(TA, o’)’ A r)=

T(4-TA, 0’) ‘“ ‘ 0 T(4-:A, 0’) ‘2r(rA’ ‘)’-

6rAl O’+4A1 0] (26)

-(TA, {)2
MrAz O’=o 4_TA1 ~,} where o is the new dependent var-

iable. Then equation (26) becomes

1
[2r(rA, 0’)’– 6rA~ 0’+4A1 O]

“=r(TAl o’)*

or with the ai~ of equations (25),

u’=+(rA1 0’)’

Hence
1’

=1 rAl 0’+3 c1
‘8

or
(rAl o’)’ +C, $$~~,

8rAz0’=4 _~Al o, _

The arbitrary constant c, is determined by differentiating
this last equation twice and evaluating for r=O. Thus,

C1=64&
Finally,

Az o’=&
A’o”

~ [(A, 0’)7’+8 ~ rA, 0“ (27)

hTow, from equation (18) with a=2, 13=— 1, and ~=&, it
follows that

nn -s

12=2=2(n_2)! v8-2

.
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[(A 0’)1’=U=,/$;.., (A’o”)”P “

Thus, equation (27) becomes

Hence, replacing & -j by its value horn equation (19) and
equating the coefficients of equal powers of r on both sides
of this equation yields

4 -:=8 ~n_n;~;.-,(A1oO)”‘2 A%”+; /n;& (A1,9”

(n=3,4j . . . W) (28)

the solution of the recursion formula, equation (22). Again,
equation (28) can be written as

(29)

Then, equating the coefficients of equal powem of k on bbth
.

~ides of this equation and putting A; ~= 1 and A8 ~=~
16

yields:

. . . . .

(30)

Note that from the first of these formulas A; ~=~ and that

from the boundary conditions, equations (11), A’ ~=~

. .

The procedure followed in order to obtain equation (28)
for ~ _j is a general one and with vexy little difficulty other
members of the family An,” can be obtained. For emrnplej

& -:=48 ~~_n;;;s.,(A’09’-sA3:+

1
~ /&=_JAIOO)’-’ [16A200+(A’o~’ (31)

From this equation it follows that

I
I.-
1. . . . . J

From the iirst of these formulas and the boundary con@tions,
7 7

equations (11), A; ~=—
384

and A: ~=—.
1536

At this point, it is noted that the coefficients of the form
A: ~ are calculated from the tit formula of each set, equa-
tions (21), (30), (32), and so forth. A number of this type of
coefficient have been evaluated (see ref. 1) by means of the
recursion formulas for the coefficients A: ; themselves.
They are listed as follows:

A: :=; A::=
7X13

72X256

A; :=& A!:= 13
18X256

13X19
‘: ~=&

A; ~=
576X256

A::=& . . . . .

A ~eful examination of these numerical values leads to the
general rule,

A? ~={3n–5} (n=2,3, . . . CO)~!4.–l

and from the boundary conditions, equations (11),

‘A::= {3n–5} -(n=2,3, . . . W)
n7d4” ’~

where by definition

{3n–5]=lX4X7X10 X13X . . . X(3n–5)

In the expression for the local Mach number distribution
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evaluated at the crest of the wavy wall (z=O, y= O), there
occurs the following power series:

This power series can be expressed in the closed form

‘=’-’:ir”ir” “

The graph of 1’ against k is & semicubical parabola with the

cusp point at k=: and I’=2. With the necessary condition

that one and only one value of k correspond to a given value
of F, the transonic sim.ilfuity parameter k cannot be greater
than 4/3. Moreover, the lower limit of k iE zero when the
amplitude of the wavy wall is zero but Mm is different from
unity. .+

RZCUZSIONFOd FOEA .#

With p= 1, the recursion formula for A“: is (compare
with eq. (69) of ref. 1)

4(n+ I)A”Cl— 2(n+2)(q+l)~A~+ ~+(q+ l)(q+2)& ‘$’A;+~=

(n=l, 2,. . .= ; g=O,l, . . .n) (33)

where

~-y=o ~=n–1 or n)
1 (g#n-l or n) ,

The solution of this recursion formula proceeds as in the
case p=O, the solution starting with q=n and descending
towards q=O. Thus, for q=n, equation (33) becomes .

Am~=–~nA’~A”+io (n=l, 2,. . .CD)

or

An:??= —$(n— l)Alf & _~

Hence, inserting the expression for
(19) gives

1 ,@-3 ‘

‘“”-:11= ‘g (n— 2)!4”” ‘A’””y ’1

(n=’, 3,. . .=)

&-t given by equation

(n=2, 3, . . . CO) (34)

or

From this relation, by equating coeflioients of equal powers
of k on both sides of the equation, the following equations—
+re obtained: o

. . . . .

Con&ider now q=n– 1; equation

4(n+ 1)4 _~= 2n(n+ 2)A”m’—

(n=2, 3, . . . CO)

(33) becomes

.

(36)

1
~ tin+ 1)A109 A“n+:lo (n=l,’, . . . m)

. .

Multiply both sides of this equation by t-” and sum from
n=l ton= CO. Then

45 (n+l)&_: P’ =22 n(n+2)Aa.1 P –
n-l n=l

~- m n—l
n~~ (m+ 1) (n—m— l)A,=>l oAnn-:.-211-

3.T1 m.o

A, “=n~, & _: P A, ~=~ A:-; P
n-2

Then it can easily be shown that the second term on the

right-hand side of equation (36) is —+ T(PAO ,’AI 0’)’ and.
that equation (36) can be replaced by

4(TA, J’= 2PA0 ~m+6rAo ~’—:T #‘ ( Ao 1’A1 o? ’-: TA 100AZ Ott

Now,
, (37)

A. ,=—~ A’oO$J (n—l)A; _~ N‘1
n-l

oij-tith th? aid of equations (25),

T& ~=—& A’#(rA1 “~’ ‘
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Hence, from the use of equations (25) and equation (27) for J& O’ it follows, after routine
of equation (37) is

987

calculations, that the integral

(38)

(39)

EquatiDg coefficients of equal powers of T on both sides of this equidion give-e

An;~:= –&
{4[2+(c,+4)]&+ 14[2+(c,+4)] &+2[5+4(c,+$)] A+(cI+4) && (kOT+*

(n=2,3, . . . m) (40)

I?rom this equation the expressions for all the coefficients of the type 4=; ,4, with n=2, 3, . . . co and r=o, 1,
. . . w can be obtnined. Thus, for example,

[
~li:_ 1 n“-’ 20 70 37 4

32 4“-’ (n–2)!+(n–3)!+(n–4) l+(n–5)! 1

. . . . . J

For q=n–2, equation (33) becomes

, 1 n–2

4(n+l)~_~=2 (n—l)(n+2) &-i—n(n—1) A*S1 z——n ~ [(m+ 2) (n— m — 2) A-+.z 0 Am~-_rn=-:zl+
m-O \

(m+l)(n–m–l)A”% ~ A“~S;.J]–~n(n+l) A1.O A“J2J (42)

The solution of this recursion formula follows along the same lines as that for equation (36) and leads to the following result:

{[

162 414 205 47 1
A“.-.;= —~ — — ._.

1

n%-8
=+(%+4) [&+&+; & ~+ .

512 (n—3)!+(n—4)!+(n— 5)l+E m 4“-’ 1

[ 1
=+1 (Cl+o [&y+(n:5)! ; :

12X128 (f?~ (n~3)!+; (n~4)l 4“-’ 8 11

*4
—— ~ (A’OO)”“

(n=3,4, . . . I=) (43)

From this equation there follow, in the usual manner, expressions for coefficients of the type ‘4 u: ~+l. T%us, for
example, with r=O,

. . . . . (44)
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RECURSION FORMULA FOR A+

WMI p=2, the recursion formula for Ana2 is

8(n+2)Am~– 2(n+4) (q+ l)&:zA~+;+

(Q+l) (q+2)&+’;n+lA~+i

& +1;. +2 Alol Am+: 0+~0,.a+2 Al,l Am-#lO)_

@+2) (IY~ AzOOAn ‘: ‘+% AZ1OA“:.lO)

(n=l,2,. . .~; q= O,l,. . .n+2) (45)

where 8 is deiined in the usual manner. The solution of
“ this recursion formula proceeds as in the ~revious cases,
st@5ng with g=n+2 and descending iwwards q=O. Thus.
for g=n+2, equation (45) becomes:

Ai+:=+’,” A-m%o (n=l,2,. ..~)

or

A.:29— 1–-~ (n– W’lo A -? (n=3,4,. . .~)

Then, from equation (19),

A.-2l_
● ––++~– 2)= (A109” “

By equating coefficients of equal powers of k on both sides
of this equation, the following equations are obtained:

. . . . . J

Consider now q=n+ 1; equation (45) becomes

8(n+2)&J=2(n+2) (n+4)A; +~-

1

5 n(n + l)(AIOOA*=+:,l+ A1,lAS +: O)—
.

n(n+ 2) (AzoOA*.~<10+ AalOA* ~s O)

(n=l,2,1 . . co) (48)

With the introduction of

A -, ,=fl~4+: ~ A, .=~$A: -: P

A1o=~A:_:w . . . . .
n-l

equation (48) is replaced by the following ordinary linear
differential equation:

A’O” TAI o“+A’~A, ;—A’: TA, o“+

A210A2 o’—A1oOAgoO (49)

By repeated use of equations (25), the solution of this cliflw-
ential equation is found to be as follows:

SPA-, ,= (Al$)’
{
~ (TA1 o’)-~ (rAl O’Y-& (TA1 o’)3–

1 1“
2048 (TAI o’)’+= #Al o“+; A, o+

[ 1}
& (c1+4) : (TA O’)’-T”A o“ —~ r(A’oO)3+

.

[ 1
A’oo A, o—: (rA, o’)’ —TA*00A200

Finally, with the aid of equation (38) and the
A-1 2,

(60)

definition of

J [An.-.:. L ~–-
1

~+~ =3–256 (n–l)! (n–2)1 (n–3)1 4“-1

1 n. -s
.—

64 (n—4)!4”-1 [++ (C1+4) ~–

1

11
‘= (Aloo)” ‘3

(n–2)! 4’-’

(
Aa;

)
n=3,4, . ..ar. fi=64—

(AloO)’
(51)

From this equation, there follows” in the usual mrmmm
formulas for the coefficients of the type A::; ,$,. Thus,
for r=O, -

[
&:: ;= ~–.- — ___

1(n– 1)! (n}2)!+(n~3)! lu~~ (n–nj~jm +Z+

[ 1
——— —
(n: 1)! (n: 2)! 1:::

(n=3,4, . , . 0)

DISCUSSION OF CONVERGENCE OF SMOOTH TYPE OF
POTENTIAL FLOW PAST WAVY WALL

In the preceding sections, a number of examples of recur-
sion formulas and their solutions have been given in consider-
~ble detail. The purpose of this exposition is threefold:
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l?imt, to show the inherent elegance of the method of integra-
tion in series although the equations concerned are nonlinear
in character; second, to present a type of analysis which may
be useful in other problems involving nonlinear differential
equations; and third, to indicate that an analytical proof of
convergence may ultimately be obtained by careful examina-
tion of the recursion formulas for the quantities ~,’ and
their solutions. One example is the obtaining of the general
expression for the coefficients A.? ~ and the subsequent con-

4
elusion that ks ~.

In actual practice it has been found more convenient to
evaluate the coefficient ts ~; from their separate recursion
formulas rather than to deri~e the general formulas. The
appendix con tains the exact numeri-ml values of the coeffi-
cientts necessary for the development of the functions jm to
the eighth power in the transonic similariQ parameter k.
These coefficients are utilized to demonstrate numerically
tho test for convergence of the smooth symmetrical -type of
potential flow (eq. (3)) assumed in this report. Thus, when
the form of j. given by equation (8) is inserted into equation
(6) for the local Mach number distribution and evaluated at
the surface of the sinusoidal wall (y= O), the following result
is obtained:

[g (n–2m) Cw( ,.,W–1
I–&fm’

=–l+n~l k“ n—2m)x~ Am;2”:
mrnO

(52)
--

uz denotes the integral part of n/2. At the crest ofwhere E

the wa-~-wall (z= O), the point of maximum fluid velocity,
with the numerical values for the coefficients inserted, equa-
tion (52) becomes:

(53)

The critical value of k (that is, when M= 1) calculated from
this equation is

k=;=0.83244

(No to that in ref. 1 the value kti=O.83770 corresponds to the
first six terms of eq. (53).) Consider now the infinite series

1.01 I 1 I I I 1 1
Lo 2.0 3.0 4.0 5.0 6.0 ‘- 7.0

n
FIGUXWJ2.—Numerical test of conve~ence.

A WAVE-SHAYED WALL ,

yJt#
n-1

where
~:= {3n–5} (n=2, 3, . .’. =)

n’nl 4-1

The Cauchy ratio test R,.=A~ yields in the limit n-~

the result that the radius of convergence RI) is equal to or
less than 4/3. If the corresponding ratio Rfi are formed for

R,.
the right-hand side of equation (53) and the quotient iVm=—

&
is calculated, the resulting sequence of numbers is as follows:

that, althoughThe noteworthy feature of this table is
RIO (and presumably R.) is converging quite slowly toward

RI=: (and ~), the quotient N. exhibits a strong tendency

to approach an asymptotic value IV for a relatively low value
of n. Figure 2 shows this tendency in a graphic manner.
The apparent asymptote represented by the straight line is
the ratio of 4/3, the limit of R1. as n+ co, and of 0.83244, the
critical value of k. Certainly, the rapid approach of the
lower dotted curve toward the apparent asymptote and the
decreasing oscillations represented by the upper dotted curve
indicate that the critical value of k is the radius of conver-
gence &of the power series on therigh&hand side of equotion
(53). Thus, the critical value of the stream Mach number
marks the limit of converg&ce of the smooth symmetrical
type of potential flow assumed. The ability to approximate
clqsely the limiting value N is a matter of luck; namely, the
choice of the lmown comparison series. Once, however,
the proper comparison series has been selected and the
approach to an asymptote indicakd, there can be no question
of the meaningfulness of the approximate value of N obtained.
It may be that one wotid like to extend figure 2 to n=9.
This extension would entail the forbidding calculation of an
additional 185 coefficients A? :. The result presumably
would be to decrease slightiy the approximate critical value
of k tid thereby raise slightly the straight-line asymptote of
figure 2. This _exkmeion of figure 2 would show still more
convincingly the approach to an asymptote and the dying-cut
of the oscillations. Perhaps more important still, figure 2
definitely shows that conclusions based on less than six or
eight terms are mere speculations in this field.

CONCLUDING.REMARKS

If the numerical test of convergence presented is accept-
able, the conclusion to be drawn is that smooth symmetrical
potential flow past the wavy wall exists only for the purely
subsonic range. Moreover no such flow can possibly repre-
sent the transonic or mixed type for which a local ry@on of
supersonic flow near the solid boundary is imbedded in the
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otherwise subsonic stream. It follows as a corollary that
the transonic or mixed type of flow past the wavy wall is
necessarily an asymmetric one. This asymmetry in the
flow pattern entails a resistance usually defied as wave
drag. As shown by experimental observations, the shock
wave associated with wave drag closes the downstream
portion of the local supersonic zone.

As a final remark-although the analysis and conclusions
of the present work refer directly to the wavy wall, the-

.

suggested result that the critical stream Mach number
marks the limit of smooth potential flow very likely applies
to other boundaries. This conclusion is baaed on the ide~
that the gradual transition from a purely sinusoidal wall to
a boundary composed of a single bump, say, introduces no
essential changes in the analysis.
LANGLEIy h_RONAUTIcAL LabOratOry,

~ATIONAL ADVISORY COMMImEE FOR AERONAUTICS,

IJANGLBY ~Em, VA.,Jhv 6,1962.

APPENDIX

- mmucfi VALUES OF THE COEFFI~NTS A::
Coefficients forjl:

~:=1

~;= 1861
3 X2569

&g= 4896755
81 X256S

~ ~,;= 42791533
648X2563

A; ?=&

A;;= 4085
24X266’

Al ~= 21287
324X256’

& ;=+

2765
‘:=—9X256’

~ ~=_ 184345
1728X2562

A:;=— 33
,. 64X256 .

139
‘; ‘= 4X256Z

A: ;=— 11

32X256

A: i= —
4811

192 X256S

e

All= 65 ~
576X256

&:= 2Q435
81 X2563

7
‘i ‘= ‘72X256

A: ~=— 53995
1728X2562

A::=— 9
32X256

& ;=_ ‘2766
96X256’#

1A;:=——
8X256

55
‘::= —8X2562

&;= 12245
144X2562

35023683
& ‘=1620X2563

6245
‘; ‘=72X256%

A? ~=
104063.

90 X256S

79
‘:;= —3X2562

A:;=_ 167
4X2562

A; ~=— 47
192X256

24199
‘:;= —864X256’

~ ~= 3385
1162X2662

Al;=
3907

432X2562

A; i= 23
12X2562

A;;= _ 683
64X2662

~;=_ 119
12X2662

1
Ai:=–—

96X256

& ;=_ 17999
90 X266a

72577
? ‘=6760X2562

3616
‘; ‘=864X2662

Aj :=_ 1Q229
864X2662

73
‘:;= —8X266Z

A;;=—
26

12 X256Z
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Coefficients for fa:

&3 :=+

~;:= 23003
27 X256S

A: ~=
9843883
81X2563

A? ;=&

A: ~= 259
72X266

A; ~= 149317
432 X266Z

A: ;a~

A::= 33
32X266

139A:;=—
2X266S

Coefficients forj,:

A: ~-~
6X256

390647
‘i ‘-720X2662

A: ~= 1704729613
16200X2563

A; :=;%

A:;= 32947
36X2662

A: ~=
20627213
162X2569

A: ;=;8

A; ~= 617
288X266

A::= 369687
1728X2661

44 ;=&

A;;= 11

24X266

A::= 4811
144 X266Z

.

~ ~_ 17’65
3X266Z

~, ;=_ 1351393
2880 X256Z

A;;=_ 155
32X266

A; i=– 30365
48X2661

A: ;= —32~:66

A; ~=— 29545
96 X256Z

1——A;:= 256

A::=_~
2562 -

44 ;=_ 35251

90X266%

A$;=–
80872738

676X2663

At :=— ’65 “
576X256

A: :=–
30596638
135X2663

A: ;=~g6~;56

127825
‘; ‘=—192X2562

A: ~=—48~:56

At ;=- 51343
216 X266S

At :=_ 2!
48X256

A: ;=— 275
8X2661

A;+ 476823
15X2664

A;;= 74363
320 X256Z

A; ~=
3083

24 X266Z

A;;= -2 X4;66X

~j=_ 1785
40 X256Z

A::= —2X2:562
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Coeffieiente for f6: -

A;+&

&’:- 90354659
259200 X256Z

A; ~=
886243 .

1080 X256~

A;;= ’375
32 X256Z “

A::= 25
24X256

A::= 1375
24X256’

Coefficients for je:

&6:= 91
432X256

&;= 285522407
4860X2563

A;:= ‘1
72X256

144862403
‘; ~=810X2563

A; :=~
8X256

A; f.= 2553091
2880 X256Z

A; ~=
9

20X256

A:;= — ‘70394
81X2568

A: :=— 88735
96 X256Z

A; :=—
25X15587
288X2562

A: ;= —25X997
24X256X

A! :=— 105
64X256

A::=— 9
32X256

.

~ ;=_ 2483629
54X2568

A: ~=_ 4371M1
5760X2569

A: i= — 265901
192X2562

403535 “
d ‘=—288X256%

~ ~=_ 79841
96X256’

A::= — 2205
8X2569-

& :=_ ~ol
60 X256t

Coeffioienta for j~:

13
~’-g-126X256

A; ~= 13
18X256

A: ~=
287

144X256

A,o= 833
‘ 0 288X256

-A, o_ 343
4‘—144X256

. Ai := ‘ 343
320X256

4 :=452;2:62

Coefficients for J$: ,

~, ~= 13X19
18X2562

A: ~=
13X19

576 X256

. A: ;=64~256

A;:= 59
24X256

~s:= 47
18X256

19
A? ~=—

2880

.
A: ~=~

2880

A; ;=&

REFERENCES

1. Kaplan, Carl: On a %lution of the Nonlinear DifferentialEquation
for Tramoniu Flow Past a Wave-Shaped Wall. NACA Rep,
1069,1952. (SupersedesNACA TN 23S3.)

2. Bromwiolq T. J. I’a.: An Introduction to the Theory of Infinite
Series. Second cd., Mwnillan and Co., Ltd., 1942,pp. 160-161.

.


